Mechanical control systems on Lie algebroids

نویسندگان

  • Jorge Cortés
  • Eduardo Martínez
چکیده

This paper considers control systems defined on Lie algebroids. After deriving basic controllability tests for general control systems, we specialize our discussion to the class of mechanical control systems on Lie algebroids. This class of systems includes mechanical systems subject to holonomic and nonholonomic constraints, mechanical systems with symmetry and mechanical systems evolving on semidirect products. We introduce the notions of linear connection, symmetric product and geodesically invariant subbundle on a Lie algebroid. We present appropriate tests for various notions of accessibility and controllability, and analyze the relation between the controllability properties of control systems related by a morphism of Lie algebroids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Survey of Lagrangian Mechanics and Control on Lie Algebroids and Groupoids

In this survey, we present a geometric description of Lagrangian and Hamiltonian Mechanics on Lie algebroids. The flexibility of the Lie algebroid formalism allows us to analyze systems subject to nonholonomic constraints, mechanical control systems, Discrete Mechanics and extensions to Classical Field Theory within a single framework. Various examples along the discussion illustrate the soundn...

متن کامل

Lie Algebroids in Classical Mechanics and Optimal Control

We review some recent results on the theory of Lagrangian systems on Lie algebroids. In particular we consider the symplectic and variational formalism and we study reduction. Finally we also consider optimal control systems on Lie algebroids and we show how to reduce Pontryagin maximum principle.

متن کامل

Horizontal Subbundle on Lie Algebroids

Providing an appropriate definition of a horizontal subbundle of a Lie algebroid will lead to construction of a better framework on Lie algebriods. In this paper, we give a new and natural definition of a horizontal subbundle using the prolongation of a Lie algebroid and then we show that any linear connection on a Lie algebroid generates a horizontal subbundle and vice versa. The same correspo...

متن کامل

Singular Lagrangian Systems and Variational Constrained Mechanics on Lie Algebroids

The purpose of this paper is describe Lagrangian Mechanics for constrained systems on Lie algebroids, a natural framework which covers a wide range of situations (systems on Lie groups, quotients by the action of a Lie group, standard tangent bundles...). In particular, we are interested in two cases: singular Lagrangian systems and vakonomic mechanics (variational constrained mechanics). Sever...

متن کامل

On the category of Lie n-algebroids

Lie n-algebroids and Lie infinity algebroids are usually thought of exclusively in supergeometric or algebraic terms. In this work, we apply the higher derived brackets construction to obtain a geometric description of Lie n-algebroids by means of brackets and anchors. Moreover, we provide a geometric description of morphisms of Lie n-algebroids over different bases, give an explicit formula fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IMA J. Math. Control & Information

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2004